Pytorch notes Link to heading

  • intro
    • core, install, cuda, tensors/numpy
  • tensor fundamentals
    • operations, mem management
    • creation, math ops, autograd track, mem for dataloader
    • gpu, shared mem
  • data pipeline
    • dataset loader, transforms,
    • custom dataset, batching strats, custom transforms w lambdas
    • workers, prefetching, gpu accel, sharding
  • neural network core
    • nn.module, layers, weigh init
    • param registr
    • convolutional 12/2d/3d, xavier/kaiming, mixing cnn/rnn
    • hooks, multimodal nets
  • training workflow
    • autograd, loss functs, optimizers,
    • gradiente accumulation, custom loss with c++, swa,
    • retain_graph, class-weighted losses, lbfgs, amp
  • Model deploy
    • serialization, torchscript, onnx export
    • zipfile zerialization, python quicks
  • Distributed computing
    • data parallelism, model parallelism
    • distributedDataParallel, torch.pipeline, remote mods
    • gradient bucketing, tensor parallelism, asynchronous RPC, nccl backend tunning
  • Performance
    • profiler toos, gpu, jit compiliation, quantization
    • tensorboard profiling, stream semantics, fusion passes, QAT
    • mem snapshot analysis, mps, graph optimization, dynamic quantization
  • Advanced archs
    • graph nets, meta leraning, probabilistic DL, sparse nets
    • PyG, maml, torch.distribution, prunning apis
    • gradient-based-meta learning, block sparsity
  • ecosystem
    • torchvision, torchtext, torchaudio, pytorch lightning
    • detection mask r-cnn, streaming api, fabric api
    • video models, bert tokenizers, text-to-speech, ligthing cli
  • debugging & testing
    • debubgging tools, unit test
    • cuda oom, autograd detect anomaly, pytest, debugging hooks, gradient testing